Sporadic ALS Astrocytes Induce Neuronal Degeneration In Vivo
نویسندگان
چکیده
Astrocytes from familial amyotrophic lateral sclerosis (ALS) patients or transgenic mice are toxic specifically to motor neurons (MNs). It is not known if astrocytes from sporadic ALS (sALS) patients cause MN degeneration in vivo and whether the effect is specific to MNs. By transplanting spinal neural progenitors, derived from sALS and healthy induced pluripotent stem cells (iPSCs), into the cervical spinal cord of adult SCID mice for 9 months, we found that differentiated human astrocytes were present in large areas of the spinal cord, replaced endogenous astrocytes, and contacted neurons to a similar extent. Mice with sALS but not non-ALS cells showed reduced non-MNs numbers followed by MNs in the host spinal cord. The surviving MNs showed reduced inputs from inhibitory neurons and exhibited disorganized neurofilaments and aggregated ubiquitin. Correspondingly, mice with sALS but not non-ALS cells showed declined movement deficits. Thus, sALS iPSC-derived astrocytes cause ALS-like degeneration in both MNs and non-MNs.
منابع مشابه
Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS.
Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now rep...
متن کاملReactive Astrocytes Promote ALS-like Degeneration and Intracellular Protein Aggregation in Human Motor Neurons by Disrupting Autophagy through TGF-β1
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease. Astrocytic factors are known to contribute to motor neuron degeneration and death in ALS. However, the role of astrocyte in promoting motor neuron protein aggregation, a disease hallmark of ALS, remains largely unclear. Here, using culture models of human motor neurons and primary astrocytes of differen...
متن کاملErratum to “Progress in Therapy Development for Amyotrophic Lateral Sclerosis”
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that cannot be slowed substantially using any currently-available clinical tools. Through decades of studying sporadic and familial ALS (SALS and FALS), researchers are coming to understand ALS as a complex syndrome with diverse genetic and environmental etiologies. It is know appreciated that motor neuron degenerati...
متن کاملAstroglial alterations in amyotrophic lateral sclerosis (ALS) model of slow glutamate excitotoxicity in vitro.
Chronic excitotoxicity mediated through defective glial and/or neuronal glutamate transport may contribute to several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). This study was performed to determine the ultrastructural characteristics of astroglial changes concomitant with motor neuron (MN) degeneration in a model of slow excitotoxicity in vitro. The study was per...
متن کاملNovel etiological and therapeutic strategies for neurodiseases: RNA editing enzyme abnormality in sporadic amyotrophic lateral sclerosis.
The motor neurons of patients with sporadic amyotrophic lateral sclerosis (ALS) express abundant Q/R site-unedited GluR2 mRNA, whereas those of patients with other motor neuron diseases including familial ALS associated with mutated SOD1 (ALS1) and those of normal subjects express only Q/R site-edited GluR2 mRNA. Because adenosine deaminase acting on RNA type 2 (ADAR2) specifically catalyzes Gl...
متن کامل